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Discontinuous Polynomial Approximations in the 
Theory of One-Step, Hybrid and Multistep Methods 

for Nonlinear Ordinary Differential Equations* 

By M. C. Delfour and F. Dubeau 

Abstract. This paper studies the approximation of the solution of nonlinear ordinary differen- 
tial equations by (discontinuous) piecewise polynomials of degree K and traces at the nodes of 
discretization. A mesh-dependent variational framework underlying this discontinuous ap- 
proximation is derived. Several families of one-step, hybrid and multistep schemes are 
obtained. It is shown that the convergence rate in the L2-norm is K + 1. The nodal-conver- 
gence rate can go up to 2 K + 2, depending on the particular scheme under consideration. The 
mesh-dependent variational framework introduced here is of special interest in the approxi- 
mation of the solution of optimal control problems governed by differential equations. 

1. Introduction. The object of this paper is the study of (discontinuous) piecewise 
polynomial approximations to the solution of systems of nonlinear ordinary dif- 
ferential equations defined on a fixed interval [0, TI, T > 0. The type of approxima- 
tion we shall use can be briefly described in the following way. The interval [0, TI is 
first partitioned into N intervals by specifying a sequence { t"},N, 0( = to < tj < 

< t = T, of real numbers. On each interval In = [tn1, tj, n = 1,. .., N, we 
construct a polynomial Un in P K(I), the space of polynomials of degree at most 
K > 0 defined on the interval In. At each node t,, we specify a trace (or a point) Un, 
n = 0,..., N. So the approximation problem consists in finding the N polynomials 
{ u,, } =1 and the N + 1 traces (or points) {n U}=0. We shall see that this kind of 
approximation leads to a global L2-convergence rate of K + 1 and a nodal-conver- 
gence rate (for the traces { Uj's) of 2K + 2. 

In this paper we adopt a more general formulation, of which the above-described 
approximation is a special case. On each interval In we allow L, 0 < L < K + 1, 
additional conditions on each polynomial U, in pK(J,) For instance, when L = 2 
and u,,(t,, n ) = Un-1 and un(tn) = Un, we obtain the continuous piecewise-poly- 
nomial approximation of B. L. Hulme [22], [23]. For that method, the global 
L2-convergence rate is K + 1 and the convergence rate at the nodes is 2K. This 
framework encompasses the a-method of Delfour, Hager and Trochu [14] for L = 1, 
and a,,u,,(t,,) + (1 - an)un+1(tn) - X", n = 0,..., N, where {a )N 0 is an a priori 
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specified family of real numbers in the interval ]-oc, 2[ (resp. ]2, oc1) for a0 = 0 
(resp. aN = 1). For the a-method, the respective global L2-convergence and nodal- 
convergence rates are K + 1 and 2K + 1. A detailed study of this particular type of 
approximation can be found in [141 and will therefore not be repeated here. 

We shall concentrate on families of approximation schemes which are complemen- 
tary to the a-schemes. On each interval In we shall introduce L conditions of the 
form 

(1.1) un(tn) = Uni1 1 = 1,...,L, 

where 

(1.2) n, E {n-M,n - M + 1,...,n) C {o,1,..., N-1,N} 

for some a priori fixed integer M > 0 which is independent of both n and N. When 
L = 1, and n1 = n - 1 or n, we obtain most of the one-step methods of the 
Runge-Kutta type. This situation also coincides with the a-schemes for an = 0 and 
an= 1, respectively. When L = K + 1, we obtain multistep methods. For instance, 
the case 

(1.3) Un(tnj) 
= Un-19 I= 1, ... ,K + 1, 

leads to the the Adams-Bashforth scheme; the case 

(1.4) Un(tnl)= Un-1+19 1 = 1, ... ,K + 1, 

leads to the Adams-Moulton scheme. When 0 < L < K + 1, we obtain hybrid 
methods. Although we shall not consider them in this paper, the present framework 
is also suitable for methods where on each interval In the polynomial Un can be 
required to go through points ahead of tn, 

(1.5) Un(tnl) = Unix -1= ,... ,L , 

(1.6) nE (n-M.. ,n, ..n + Mi. 
It seems that convergence rates will be the same as those predicted by the theory 
under the more restrictive condition (1.2). The case L = 0 first appeared in Delfour 
and Dubeau [13], and all the other cases are studied in F. Dubeau [17] from a 
slightly different point of view. 

In Section 2 we shall derive the mesh-dependent variational framework underlying 
the discontinuous polynomial approximation schemes. In Section 3 we shall for- 
mulate the Galerkin approximation problem and prove that it always has a unique 
solution provided that the size of the partition 

(1.7) h = max{tn -tn1:n = 1,...,N} 

is small enough and that the family of partitions is regular as h goes to zero; that is, 
there exists c > 0 (independent of h) such that 

(1.8) hn- =tn - tn1 > ch, n = 1,...,N. 

In Subsection 3.3 we shall give a numerical implementation of the previously 
mentioned methods by introducing an appropriate interpolatory quadrature formula 
to evaluate the integral of the nonlinear terms. In Section 4 we shall show that the 
respective L2- and nodal-convergence rates are K + 1 and 2K + 2 - L. The general 
numerical scheme will be specialized to completely discontinuous methods (L = 0) 



APPROXIMATIONS FOR NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 171 

in Appendix 4, to multistep methods (L = K + 1) in Appendix 5, to continuous 
methods (L = 2, K > 1) in Appendix 6 and some hybrid methods (L = 1, T, = 1 or 
0) in Appendix 7. All appendices appear in the supplements section at the end of 
this issue. Many of these numerical schemes have been studied by different methods 
(cf. J. C. Butcher [4]-[8] and M. Crouzeix [11]). 

The mesh-dependent variational framework underlying our discontinuous formu- 
lation can be found elsewhere for partial differential equations and boundary value 
problems (Babu~ka and Osborn [1], Babuska, Osborn and Pitkaranta [2], F. Brezzi 
[3], M. Fortin [18], Lesaint and Raviart [25], Oden and Wellford [28], Raviart and 
Thomas [29], J. M. Thomas [31], [32], Wellford and Oden [33]-[35]). 

This formulation is also of the highest interest in the approximation of the 
solution of optimal control problems governed by differential equations. Indeed, the 
Galerkin approximation of the differential equation makes it possible to obtain 
general convergence results and to carry out the error analysis for the optimal 
control of the approximated problem. So the work is done only once for large 
families of numerical schemes. This approach can also be used to study the 
convergence and to do the error analysis of the matrix Riccati differential equation 
associated with a linear-quadratic optimal control problem (cf. J. C. Nedelec [27], 
M. C. Delfour [12], Delfour and Trochu [15], [16]). 

Notations. R will denote the field of real numbers and E the finite-dimensional 
space Rd for some integer d > 1. The product space in E will be defined as 

d 

X * y = EXiyi, X = (X1, ..., Xd), Y = (Y1 *... I Yd) E Rd. 
i=l 

The following spaces of functions f: [a, b] -+ E will be utilized: LP([a, b]; E), the 
space of p-integrable (1 < p < xo) or essentially bounded functions (p = x), 
HP([a, b]; E), the Sobolev space of functions with derivatives through order p in 
L2([a, b]; E), C([a, b]; E), the space of continuous functions, W1'l([a, b]; E), the 
space of functions in Ll([a, b]; E) with a first derivative in Ll([a, b]; E), and 
P K([a, b]; E), the space of all polynomials of degree at most K. For f E L?(In; E), 
let lIflloo n denote the essential supremum of 1f(t)I over t E In, where is the 
Euclidean norm, and for f E HP(1In; E), define 

2 P 

P n- (f(i), f(i)) 
i=O 

where (, )n denotes the inner product in L2(1In; E). We also define the norms 
N 

= max{| - oon: n = 1,- ,N} and PII 2i =pn 
n=1 

The topological dual of a real Banach space B will always be written B*. 

2. Weak Forms of the Differential Equation. The object of this section is to show 
how a system of ordinary differential equations can be transformed into a mesh-de- 
pendent variational equation with a weak solution. This equivalent "weak formula- 
tion" provides an adequate framework for the approximation of the solution by 
discontinuous piecewise polynomials. 
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2.1. Classical Results. Consider the following system of ordinary differential 
equations 

(2.1) x(t) =f(x(t),t) on [O,T], x(0) = x- , 
where T > 0 is a real number, xo E E is the initial condition, x: [0, T] -+ E is a 
vector function and f: E x [0, TI -- E is a given map. The classical existence and 
uniqueness results are summarized in the next theorem. 

THEOREM 2.1. Assume that the following hypotheses are verified for the map f: 
(i) for all x in E, the map t -+ f(x, t) is (Lebesgue) measurable, 

(ii) there exists a function q in L2(0, T; R) such that 

VX1, X2 in L2(0, T; E), 

(2.2) If (Xl(t), t) - f(X2(t), t) I < q(t)lxl(t) - x2(t) 1, 
(iii) the map t -) f(O, t) belongs to L2(0, T; E). 

Then there exists a unique solution in H1(0, T; E) to system (2.1). 

Proof. Adaptation of the original proof of C. Caratheodory [9]. E 
Remark 2.2. In the next subsection we shall give a proof of this theorem. E 
2.2. Weak Formulation. Given a partition of the interval [0, T], we "transpose" the 

original differential equation on each subinterval of the partition. This leads to a 
" mesh-dependent" weak formulation of our original problem (2.1). 

Definition 2.3. A partition of the interval [0, T] of size h is characterized by an 
integer N > 1 and a sequence { t n n=o of real numbers such that 0 = to < ... < tn 
< ... < tN = T. with 
(2.3) h=max{tn-tn-1:n=1,...,N}. 
Subintervals will be denoted by In = [tn-1 tn], n = 1, ... , N. O 

Definition 2.4. A family of partitions indexed by h is said to be regular if there 
exists a constant c > 0 such that as h goes to zero 

(2.4) Vn =1, ... , N, ch < tn -tn-1 < h. O 

Throughout this paper we shall only consider regular families of partitions. 
On each interval Ing form the inner product of the first equation (2.1) with vn in 

H1(I,,; E) and integrate by parts: 

(2.5) x(t,,) * Vn(tn) = X(tn-1) * Vn(tn-1) + j [X * Vn + f(x) * Vn] dt, 

where f(x) denotes the function t -* f(x(t), t): [0, T] -- E. Then sum up over all n 
equations (2.5) and the second equation (2.1) multiplied by an arbitrary V0 in E. We 
obtain the following variational equation: 

N - 1 

X(tO) * [VO - 
V1(tO)] + E X(tn) [Vn(tn) Vn+1(tA) 

N 

(2.6) + X(tN) + VN(tN) ) x [v(n dt 
,,= 1 ' 

?r 
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for all 
N 

(2.7) Y.= (Vo vl,**vN) E r= E X H H1(In; E). 
,,=V1 

The space $' will be endowed with the norm 

(2.8) 1 II,= ( 0 12 + / 12 Vn 1,n 
n-1 

This suggests the following variational problem: "To find 
N 

(2.9) = (Uo,.. UN,Uj,..., ,UN) E a& = EN +1 x 1 L2(In; E) 
n=1 

such that 
N-1 

UO [VO - V1(tO)] + E UnL [Vn(tn) -V+l(tn)] 

VN =tV 1nd 

(2.10) + N * Ut)-S|O nd 

N 
= x? V0 + E Jf(un) vndt 

t = 1 [n 

for all v in Yl". Locally, this problem is completely equivalent to finding Un in 

L2(I,,; E) and U,, in E such that 

J UO = xO, 

(2.11) Un, Vn(tf) = U-1 . V(tn-1) +f [lu . On + f(u) * v,] dt 

for all v,, in H1(In; E), and all n = 1,..., N. 
To solve (2.10), consider an elementary application of the transposition technique 

(Lions and Magenes [26]). This leads to the following basic result. 

LEMMA 2.5. (i) For each n, the map 

V -* (-s v(tn)): H'(In; E) -* L2(In; E) X E 

is an isomorphism. 
(ii) Let b be an arbitrary element of H'(In; E) *. The variational problem "to find 

(u, U) in L2(I; E) X E such that 

I~ ~ ~ ~ I U.V(t u - f u = b(v) 

for all v in H1(In; E)", has a unique solution. 

Proof. (i) Obvious. (ii) By transposition. 0 
We can now directly solve (2.10) and in this way obtain a solution of (2.1). 

THEOREM 2.6. Assume that the hypotheses of Theorem 2.1 are verified. 
(i) (Existence and uniqueness). There exists a unique solution ii in O& to the 

variational equation (2.10). 
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(ii) (Regularity). Moreover, 

(2.12) U = (x(tO),...,x(tN),xI1*...*xII), 

where x is the solution of problem (2.1) and x | denotes the restriction of the function 
x to the interval In. 

Proof. (i) (Existence and uniqueness). Notice that U0 = x0. We first show that 
(2.10) has a unique solution if h is small enough. On each interval In suppose that 
U,,_1 is given. We then have to find (Un, Un) in L2(In, E) x E such that 

(2.13) Un * vn(tn)-f n u bndt = Un-1 * vn(tn-1) +f f(un) * vndt 

If we assume that un is fixed, the right-hand side of (2.13) defines an element of 
H1(In; E)*. Indeed, under the hypotheses of Theorem 2.1, and from the original 
work of C. Caratheodory [9], the map t f(U(t), t): In -* E belongs to L1(In; E) 
for all un in L2(In; E). 

Now define the sequence { un }0 as follows: u ? is chosen arbitrarily in 
L2(I,,; E), and for i > 0, u+ 1 is the solution of 

In 

for all V,1 in H1(In; E). This solution is uniquely determined by Lemma 2.5. In 
order to show that { u' }7=0 is a Cauchy sequence in L2(In; E), subtract Eq. (2.14) 
from itself with ui+1 and u", to obtain 

-1 u] v()fu? u'] - i dt [Unz 1 Uni] * Vn (tn )- [Uani+ 1 n ] n 

(2.15) 

= f [f(U)i-f(Un:)I *n dt. 

Substitute into (2.15) the solution v of the following system of equations 

v(t) = u'(t) - un 1(t) on In, v(t") = 0 

In view of the hypotheses of Theorem 2.1, this yields 

|| On Ui _ 10- n 11 q 110-nil U _ Ui 110n 

Then, if h is small enough, we have a contraction. Thus, { u } 0 is a Cauchy 
sequence in L2(In; E) which converges to a limit Un in L2(In; E). Moreover, by 
continuity, we obtain 

-f n ' 6ndt = Un-1 * Vn(t- 1) + f(Un) . Vn dt 

for all v,, in H1(In; E) such that vn(tn) = 0. This solution is unique, as can be 
shown by contradiction. Finally, the vector Un is given by 

(2.16) Un * V= Un-1 * V+ ff(un) * Vdt 

for all V in E, and it is clear that the pair (Un, Un) is the unique solution of (2.13). 
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We proceed in this way to the next interval and so on in a finite number of steps. 
To remove the dependence on h, it is easy to show that the variational problem 

(2.10) is equivalent to "find (u, U) in L2(0, T; E) X E such that 

(2.17) U* v(T) - u vdt = x * v(O) + f f(u) * vdt 

for all v in H'(0, T; E)". In fact, the solutions of (2.10) and (2.17) are related as 
follows: U0 = x0 and 

an=U l Un * V = Un-* V+ A4 (U)* 

for all V in E and n = 1,..., N. 
(ii) (Regularity). Pick v in 9(0, T; E) (the space of infinitely differentiable 

functions with compact support in ]0, T[). Then from (2.17) we obtain 

-f u idt = f(u) * dt. 

Thus u in L2(0, T; E) c L'(0, T; E) has a distributional derivative in L1(0, T; E) 
and hence belongs to W1"'(0, T; E) C C(O, T; E). From this fact, and hypotheses 
(ii) and (iii) of Theorem 2.1, we further show that the map t -- f(u(t), t): [0, T] -- E 
belongs to L2(0, T; E). Therefore u belongs to H'(0, T; E). 

If we integrate by parts the integral term on the left-hand side of (2.17), we obtain 

[U - u(T)] * v(T) = [xo - u(O)] * v(O) 

for all v in H1(0, T; E). Then u(0) = x0 and u(T) = U. It is now easy to show that 
U= u(tn) for all n, and this proves the result. Cl 

Remark 2.7. This theorem can be generalized to solve the following variational 
problem: "To find D in 1 such that 

N 

Uo [Vo - V1(t0)] + E Un [Vn(tn) -V+l(tn)] 
n=1 

N 

+ UN 
- 

VN(tN) E | n I bdt = (u)(6) 
11=1 In 

for all v in Y' ", where we consider a map b: ac - * with the following 
properties: 

N 

b(ii)(V) = x0 - VO + E (bn(Un) Vn>*,, 
n=1 

where x0 is in E, and for all n 
(i) bn: L2( In; E) -. C(I"; E)* (the topological dual of C(In; E)), 

(ii) there exists a positive constant y and for every partition there exist positive 
constants { yn 1 such that 

(a) for all u1 and u2 in L2(In; E) 

(bn(u') - bn(U2), v)*" n v IU1 _ -2 
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(Here K ), denotes the duality product between C(I"; E) and C(I,; E)*.) In 
this way we can deal with systems of ordinary differential equations of the form 

J 
I x(t) = f (x(t), t) + a a3jS(t - tj), 

ij=1 

x(O) = x, 

where 0 < t1 < ... < tj < T and 8 is the Dirac delta function. C 

3. Formulation of the Approximation Problem. In this section we use a Galerkin 
method to construct the approximation problem from the mesh-dependent varia- 
tional equation (2.11). We then show that this approximation problem always has a 
unique solution for a small enough partition size h. Finally, the integrals of the 
terms containing the nonlinear function f are evaluated by a specially constructed 
quadrature formula. This yields the general form of the numerical scheme which is 
ready for numerical implementation. 

3.1. Galerkin Approximation Problem. Our starting point is the variational equa- 
tion (2.11) defined on the spaces Y and 0?. We seek a solution jh to (2.11) in a 
finite-dimensional subspace /h of 9/ by requiring that (2.11) be verified for all 
elements 1h of a finite-dimensional subspace ` h of Y. This is an approximation of 
the Galerkin type. 

Define the subspaces qh and YYh of 9/ and Y as follows: 

(3.1) O& h |i hah "= (UO ...UN, U1..., UN) Eq such that un 
E 

P (In, E) 
\ subject to L (>0 ) additional conditions for n = 1, ... ., N , 

pKVn 
E +1L (In; E) for n = 1, ..., N 

where K and L are positive or null integers such that K + 1 - L > 0. Note that 

dim j h = [1 + (K + 2 - L)N]dim E = dim/h. 

With the above choices, the approximation schemes obtained from (2.11) reduce 
to the following problem: "To find fjh in J//h such that U0 = x0 and 

( 3.3) |, ~Un * n( tn) )- n ndt = Un1 _ Vn(tn_1) + f (Un) Vn dt, 

L additional conditions on un 

for all v,, in pK+1-L(In; E)and n = N 
We shall study the following families of approximation schemes: 

(i) for L = 0 we obtain new Galerkin methods that will be referred to as 
"completely discontinuous"; 

(ii) for 0 < L < K + 1, and on each interval In, the L conditions are of the form 

(3.4) Un(tn,) = Un1 I = 1,..., L, 

where no E {0,..., N). These Galerkin methods will be referred to as "nodal 
methods". To obtain existence and convergence results, we impose the following 
condition on the sets {n} L 1: there exists an integer M > 0 such that for all 
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n =l I..., N and all I = 1,..., L, 

(3.5) n, E{n-M,n-M + 1,...,n}. 

Remark 3.1. The situation (ii) contains the "discontinuous Galerkin method" of 
Lesaint and Raviart [25] for un(tn) = Un, n = 1,..., N, and the "continuous 
Galerkin methods" of B. L. Hulme [22], [23] for u(tn - l1) = Un - l and un(tn) = Un. 
We also obtain multistep methods for L = K + 1 and hybrid methods (cf. J. C. 
Butcher [4], C. W. Gear [19], Gragg and Stetter [20] and others) for L < K + 1. 0 

3.2. Solution of the Approximation Problem. We show that Eqs. (3.3) have a unique 
solution if h is small enough. The simplest case, when L = 0, follows directly from 
Subsection 2.2. 

3.2.1. Completely Discontinuous Method (L = 0). Consider 

PK+1(j; E) c H'(In; E) and PK(In; E) c L2(In; E) 

For the above subspaces, Lemma 2.5 and the first part of Theorem 2.6 reduce to the 
following lemma and theorem. 

LEMMA 3.2. (i) The map 

V - (-Vv(tn)): PK+1(In; E) 
_ 

pK(In; E) x E 

is an isomorphism. 
(ii) Let b be an arbitrary element of P K+ In; E)*. The variational problem "to find 

(u, U) in pK(In; E) X E such that 

U . V(tn) - f u = b(v) 

for all v in P K+ l(f I; E)" has a unique solution. O 

THEOREM 3.3. Assume that the hypotheses of Theorem 2.1 are verified. The 
following variational problem: "To find j h in qjh such that 

N-1 

UO [IVo - V1(t0)] + E Un [Vn(tn) - Vn+l(tn)] + UN VN(tN) 
,= 1 

N N 

- E fan u bn dt =x *VO + E jf(un) vndt 

for all v in r h" has a unique solution if h is small enough. O 

3.2.2. Nodal Methods (O < L S K + 1). Consider the space pK-L(In; E) X EL 

endowed with the norm 

(3.6) V= n + hi2 E 

1=1 

where w = (w, W,,..., WL), and define the L2-projector AL: PK(In; E) -3 

pK-L(fI,; E) (if L = K + 1, set pK-L(In; E) = (0}). 
In view of the regularity of the partitions and hypothesis (3.5) we can prove the 

following useful lemma. 



178 M. C. DELFOUR AND F. DUBEAU 

LEMMA 3.4. The map Jn defined by 

(3.7) u - Ju = (YLU, u(tnlj), * , u(tnl,)): PK(In; E) -> pK-L(I; E) X EL 

is an isomorphism, and there exist two constants f1 and f2 (independent of h and of 

the points {t,}fL= 1) such that 

(3.8) i#1 11 U 110n < || JnU || < #211 U 110,t7- 

Proof. Cf. Appendix 1. 0 
We can adapt Lemma 3.2 as follows. 

LEMMA 3.5. Let b be an arbitrary element of pK1L( In; E) * and let {n}fL 1 be 
L arbitrary points in E. The variational problem "to find (u, U) in PK(IJ; E) X E 
such that 

(3.9) Us V(tn)-f u * &dt = b(v) 

for all v in pK+l -L(In; E) and 

(3.10) U(tn) = Un, for1= 1,...,L" 
has a unique solution. 

Proof. We solve Eqs. (3.9) and (3.10) in two steps. Firstly, apply Lemma 3.2. Then 
there exists (u0, U) in pK-L(In; E) x E such that 

U * V(tn) - U? * &dt = b(v), 

for all v in pK+1-L(In; E). Secondly, by Lemma 3.4, there exists u in PK(In; E) 
such that 

JnU = I UnI . I Un ) 

Since uO is the L2-projection of u, (u, U) is the unique solution of (3.9) and (3.10). 
E 

THEOREM 3.6. Assume that the hypotheses of Theorem 2.1 are verified. Under 
conditions (3.4) and (3.5), Eqs. (3.3) have a unique solution if h is small enough. 

Proof. Suppose (3.3) have been solved on I, for i = 1,..., n - 1. Define a 
sequence {(u1u, U1')})?% in PK(IJ; E) X E as follows: (u%, Uno) is chosen arbitrarily, 
and if (u', U1') is given, (u +1, Un+ 1) is the unique solution, by Lemma 3.5, of 

(3.11) ua1 (t) (U if 
n=< n, n n 

Un' if n1 = n 

and 

(3.12) -f un+1 *V)ndt = U v-1 * Vn(tn-1) + f f(un) * vndt 

for all v,, in pK+?-L(In; E) such that vn(tn) = 0. Finally, Un'+1 is uniquely 
determined by 

(3.13) Un + 1 . V = Un-1 V + |f (u+1) * Vdt 

for all V in E. 
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In order to show that { u' II0 is a Cauchy sequence in P K(JI; E), subtract Eq. 
(3.12) from itself with u"+' and un and set vn equal to the solution of the equation 

V (t) = ?*L(ui - ui+9)(t) on I, v"(t) 0. 

This yields 

(3.14) I1gDL(ui+l - ui ) On < h 112 IqI1oseuj - uin. 

From (3.6), (3.7), (3.8) and (3.14) we have 

Pill uj1 - u h1j2Iqoju- - 21 || In 1 _ on |lo 0n < h 11l q llo nil Ui -U in 110, 
(3.15) L 

+ni/2A an 1 ( tn )- U n ( ton) 
1=1 

But from (3.11) the last summation reduces at most to only one term if there exists 
an I such that n1 = n. In this case, subtract (3.13) from itself with U' and UL- 1 and 
select V = Ub - U, 1.We have 

IUn' Un- | q |qln|U" - Un 110,n 

and substitute this last result in (3.15) if necessary. Thus, 

ji+j?1 2j 1 q 11h 1/211jUj -u illon, 

and (2//l)h 1,2Ijqjj0 can be made smaller than 1 for h small enough. Then, { u }??% 
is a Cauchy sequence and converges to a unique Un in PK(In; E). Finally, select Un 
such that 

Un * V = Un- 1 * V + | U f n Vdt 

for all V in E. It is easy to show that Un' -- Un as i -x o and (Un, Ub) is a solution 
of (3.3). The uniqueness follows by contradiction. ? 

3.3. Numerical Implementation. We now turn to the problem of computing the 
solution of (3.3), and approximating the integral of the term which contains the 
nonlinear function f. Several examples will be given in Appendices 4-7. In order to 
simplify the discussion, we shall assume that E = R (in this section only). We shall 
also write PK(In) and PK(O, 1) for PK(JIn; E) and PK(0 1; E). 

We first introduce a (K + 1)-point quadrature formula which will be used in the 
construction of basis functions for the sets 9h and rfh. We already know that on 
each interval In the polynomial U n in P K(In) goes through the points 

(3.16) un(tn,) = U,,, I= 1,...,L; 

moreover, we would like that the term un"- in (which is a polynomial of degree 
2 K - L) be integrated exactly. 

For each n = 1,..., N such that 0 < n, < n, I = 1,..., L, define the following 
sequence { Tn ) L 1 of points: 

(3.17) Tn= (t1 - tnl)/lh) I= 1,..., L. 

In view of hypothesis (3.5) on the n1's, the points {T 1 }fL all lie outside the open 
interval (0, 1). 
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For simplicity, we shall assume that the sequence { T } l 1 is independent of n 
and denote it by {( }Tf. However, everything that follows is true in the general 
case. 

Consider a (K + 1)-point quadrature formula of the form 
K+ 1 

(3.18) A(T) dT - E ak (TJ 
k=1 

where the quadrature points { Tk } K+l are K + 1 distinct points such that the first L 
points { (r } ,11 are fixed outside the open interval (0, 1). 

It is shown in Appendix 3 that we can always choose such a formula which is 
exact for polynomials of degree at most 2K + 1 - L; it is also shown in Appendix 3 
that the remaining constructed points { - }kKr + 1 + 1 are distinct, unique, and all belong 
to the open interval (0, 1). 

Once the quadrature points have been obtained, we use them to construct bases 
for u,1 in PK(In) and vn in pK+?-L(In). Denote by {4 k: k = 1,..., K + 1) the 
Lagrange interpolating polynomials associated with the K + 1 points { To } 1 

K+1 _ 

(3.19) O(T) = 11 0 < T < 1, k 1,.. .,K+1, 
i=- Tk Ti 
i*k 

and let 

(3.20) fnk(t) = ck( hte ), t.n-1 < t < tn' 

Then {(kOnk: k = 1, . . ., K + 1) is the desired basis of PK(JI), and the polynomial un 
has the following representation 

L K+1 

(3.21) un(t) = E UJcnl(t) + E Unkfnk(t), 
1=1 k=L+l 

where Unk = Un(tnk), tnk = tn-1 + hnTk, k = L + 1,..., K + 1. 
The basis for the polynomials vn in K+ 1L(J) is obtained in the following 

manner. First, construct the Lagrange interpolating polynomials associated with the 
K + 1 - L points {Tk}kL+l' 

K+1 T Tj 
(3.22) Ok(T k = L + 1,...,K + 1. 

i=L+1 Tk Ti 
i*k 

It forms a basis for P K- L(O, 1). From it we construct the new family of polynomials 

(3 23) 4+JT) 
= OM~) dt, 0 < T < 1, k = L + 1, ,K + 1, 

(3.23) 

it is readily seen that the new family of polynomials {k: k = L,..., K + 1) is a 
basis of p K+1- L(0, 1). The set of polynomials 

(3.24) lnk(t) = 4k( h, ), t, 
1 

t 

will be the desired basis for pK+1-L(I_). 



APPROXIMATIONS FOR NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 181 

We now derive an equivalent set of equations for system (3.3). First, set v"(t) = 

C,7~t) = 1 in (3.3). We obtain 

(3.25) Un = Un-1 + f f(un) dt- 

Then set Vnt = Inks k = L + 1,..., K + 1 in Eq. (3.3) and use the quadrature (3.18) 
to integrate exactly the polynomial U n* in with- Un given by (3.21). We obtain 

(3.26) uk Jn- + a E (Un, - Un,) aok( rT + f(u,) ( PU dt 
ak k~ 

for k = L + 1, . . ., K + 1. This leads to the following theorem. 

THEOREM 3.7. Equations (3.3) are equivalent to U0 = x0 and for n = 1,..., N such 
that 0 <, n1 -< n. I= 1, ... ., L, 

L 

Un(t) = Un[1 + E (Un, Un- 0(t) K 1=1 

(3.27) + K+1 a Ut) J f(u).ikdt9 

|Un = Un - + | f(Un) dtg 
~~~~~~a/ In, 

where 

(3.28) /3,,,(t) = On,,(t) - a, 2 Ok(I nk(t), 1 = 1,..., L. 
k=L+1 ak 

Moreover, the /3nl's belong to pK(In) [ p K L(In)]. ([ p K- L(In)] denotes the 
orthogonal complement of p K- L(IJ) in the space L2(I,) with respect to the inner 
product.) 

Proof. To obtain the first equation (3.27) and (3.28), we substitute (3.26) into 
(3.21); the second equation (3.27) is (3.25). Finally, from (3.18) and the fact that it 
integrates exactly polynomials of degree less or equal to 2K + 1 - L, it is easy to 
show that for each 1 = 1, .. ., L, 

| nli9njdt = 0 j = L +1... ,K + . 

So the f3n,'s are orthogonal to P K- L(In), since the set of polynomials { On: j= 
L + 1 ... ., K + 1} is a basis for PK-L(In). C 

COROLLARY 3.8. Assume that the integral containing the nonlinear term f is 
evaluated with the (K + 1)-point quadrature (3.18) which is exact for polynomials of 
degree at most 2K + 1 - L and which goes through the L points defined by (3.17). 
Then Eqs. (3.3) lead to the following system of equations: 

(3.29a) UO = xO 
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andforn = I,...,Nsuch thatnl n, I= 1,...,L, 

Unk, if k =,..., L, 
L 1 L 

(3.29b) Unk = L|,U-l + E (Un - Un-l)fi,(Tk) + ?-h alf(Unf,,tn.)l+k('r) 

! t +-hn E aaf (unl, tn,)4'k(Tr), if k = L + 1,..., K + 1, 

L K+r1A 

(3.29c) Un= Un-1 + hn E alf(Un,, tn) + E af(Unhtnl) 
I=1 I=L+l 

where 

K+ 1 6k ( T ) (3.30) f3(T4')= OJT(') - a1 E akT, Ok (T), 1 ,.,L. El 
k=L+l k 

Remark 3.9. When n1 0 n, I = 1,..., L, Eqs. (3.29b) and (3.29c) are uncoupled. 
So we have to solve a nonlinear system of K + 1 - L equations in the K + 1 - L 
variables { Unk: k = L + 1,..., K + 1). When there exists t in (1,..., L} such that 
nI= n, then Eqs. (3.29b) and (3.29c) are coupled. Thence we have to solve a 
nonlinear system of K + 2 - L equations in the K + 2 - L variables 

unk: k = L + ,...,K + 1} U U . This can be done by iteration. 

Remark 3.10. The various coefficients in Eq. (3.29b) can be easily computed from 
the quadrature points { 'k 4 kt11 and weights { ak } k Moreover, 

(3.31) j,('k) = -Ok(TI)a,/ak, = 1,..., L, k = L + 1,..., K + 1. 

COROLLARY 3.11. The polynomials P,, I = 1,..., L, can be computed by the 
procedure of Appendix 3 in the following manner. For a fixed 1, the polynomial f3 is 
the product of two polynomials 21 and w, of the following form: 

L T - T 

(3.32) OJi) j= H 'inpL (0, 1) 

j*1 

K 
T -Tk T , p+- 

(3.33) W,(T) = H - -inPK (0, 1), 
k=L+1 Tl- Tk Tl- Tl 

where the points {f i I U { ik: k = L + 1,. ..,K} can be uniquely chosen in such a way 
that the polynomial w191 be orthogonal to the space PK-L(O, 1) on the interval (0, 1). 

Proof. Cf. Appendix 3 with L and K replaced by L - 1 and K - 1 and the set 

tTk: k = 1, . . ., L} replaced by the set tTk: k = 1 ..., L, k # 14. 0 
Remark 3.12. We shall see in Section 4 that the predicted L2- and nodal-conver- 

gence rates are K + 1 and 2K + 2 - L, respectively. The use of a quadrature 
formula which integrates exactly polynomials of degree 2K + 1 - L will not affect 
those rates (cf. F. Dubeau [17]). 

The integral of the term containing the nonlinear function f can also be evaluated 
by an arbitrary J-point quadrature formula of the form 

(3.34) de = E w () 
J=1 
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where {( : j = 1,..., J } are J distinct real numbers. On the interval In, (3.34) 
becomes 

(3.35) |g(t) dt = hn Ewjg(t,,j), 
en j=1 

where tn=j t,-1 + h Jj 1 i 
= J 

COROLLARY 3.13. Assume that the integral of the term containing the nonlinear 
function f is evaluated by (3.35). Then Eqs. (3.3) yield 

(3.36a) U0 = x0 

and forn =1,...,Nsuch thatn, < n, I = 1,...,L, andfori = 1,..., J. 

ni U + h E Wjf(nj) a k ( ] 

L 
+ E (Un, - Unb1)fi,(P) 

(3 .36b) n/, : n 

+ } hsenlt) E Wjf(nj)g if 3m e {1,..., L} s.t. nm =n, 
\j=l 

0 otherwise, 

(3.36c) Un = Un-, + hn Wjf(unj)g 
j=1 

where forj = 1, ..., J. 

tnj tn,_ + h Jj 9 Fny = Un tnj) and f (Fnj) f U tnj ( 9y to1), 

Moreover, Eq. (3.26) becomes 

(3.37) Unik = Un + a (Un-1- Unl)aOk(Tr) + E wJf (WFnj)k(Mj) ak ak.j~ 

k = L + 1,..., K + 1, andun is determined by (3.21). E 

Remark 3.14. Again, if formula (3.34) integrates exactly polynomials of degree 
2K + 1 - L, the convergence rates of (3.29) are preserved for (3.36) (cf. F. Dubeau 

[17]). 

4. Error Estimates. This section contains the main two theorems which establish 
the convergence and provide asymptotic error estimates. The first theorem shows 
that if the solution of (2.1) belongs to HK+ 1(0, T; E), the L2 and nodal errors are 
proportional to hK+ 1. The second theorem shows that under appropriate hypotheses 
on the function f there is an asymptotic superconvergence at the nodes proportional 
to h2K+2-L (recall that 0 < L < K + 1). 

Throughout this section we assume that f satisfies the hypotheses of Theorem 2.1, 
that the family of partitions is regular as its size h goes to zero, and that h is 
sufficiently small for the existence of a unique solution ii to (3.3). The letter c will 
denote a generic constant independent of h. 
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4.1. L2 and Nodal Errors. 

THEOREM 4.1. Assume that the solution x of (2.1) belongs to HK+ 1(0, T; E). For 
M > 1, assume that on the first M - 1 intervals the solution iu of (3.3) is such that 

(4.1) max{1IUn - x(tn)j: n = 0,...,M- 1) ; chK+1 jx(K+1)|j0 

andforj= 0,...,K+ 1, 

{M-1 u1/2 
(4.2) | -X|| 112 <. chK~- X(x 1)lo 

n=l xII~~~~} ~ chK?14x(K+K) 1 

(when M = 1, we use the fact that Uo - x(to)l = 0), where x(K~l) denotes the 
(K + 1)st derivative of x. Then, when h is small enough, i 

(4.3) max{IIUn - x(tn)I: n = 0,...,N} < chK+11x(K+?1)Io, 

andforj= 0,...,K+ 1, 

(4.4) 1uh ChK+l-jllX(K+l) ||I 

where 

N N 1/2 

h = Y UnX and 11 Ilj= E 2II 
n=1 n=l 

(XI is the characteristic function of In). E 

Remark 4.2. Inequalities (4.1) and (4.2) are the standard hypotheses in the 
analysis of multistep methods. 

Proof of Theorem 4.1. Since x verifies Eqs. (3.3), we have 

[Un --X(tn)] 
- 

n(tn) = [Un- - X-(tn-1)] * Vn(tn-1) + |[Un -XI v ndt 

(4.5) 

+ j[f(Un) -f(x)] * vndt. 

Substitute vn = -x(tn) into (4.5): 

(4.6) |Un X(tn) I < AU-1 -X(tn-1) I + jjq 11AO n -u X 10,n' 

Now introduce an arbitrary polynomial Fin in PK(In; E). We seek a bound on 
the term IIOL(Un - F0110, where -9L is the L2-projector of L2(In; E) onto 
p K- L( I,,; E). Substitute for vn into (4.5) the solution of the equation 

On(t) = --9L(Un - in)(t) t E I Vn(tn) = 0. 

We obtain the following first estimate 

11 L(Unl - Fini) |l n hnI2IUn - I-x(tnX-1) | + h n/2jq o, UnUn llo n- 

+ [1 + n1 q 110,n] 1 - in- X llon. 
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From (3.8) and the last inequality we obtain 

[ hi1/n2 11 q II.11 Un,]ll 
-h1,/2jq0 1ju/2 

(4.7) n I Un- -x(tn-1) I + [1 + hn,/2 1qii0,n] 1 -n -X 110,n 
L 

+ h1/2 Y. IUn (tn,) - 
n(tn,) 

1=1 

If h is small enough, (4.6) and (4.7) yield 

lUll - X(tn) I < |Un-1 X(tn-1) I 
L 

(4.8) +chn / llqllon[Ibl - - X(tn-1) I + Y Un (tnl)- in (tn1) 

+ c|| q jo.Ii -n x 1=1 I 

From (4.7), we also have 

( ) iu- Xlon <ch1/ [Un -X(tn-1) I+ n |U( tn Fn(tnl)| 

+c|| un X- l0,. 
Now if u,, is the Lagrange interpolating polynomial of degree K such that 

Iun(tn,) = x(tn1), 1 = 1,..., L < (K + 1), 
we can use the following result of interpolation theory: 

LEMMA 4.3. Let P be a linear operator from HK+'(I; E) to HJ(I; E) such that 
Pu = u for all u in pK(I; E) where 0 < J < K + 1. Then there exists a constant c 
independent of mes(I) such that for every x in HK+ '(I; E) we have 

jlPx - xjj, < c(mesI)K+l1-JIX(K+1)10. 

Proof. Cf. P. G. Ciarlet [10] or Strang and Fix [30]. 0 
Since [t,,-1 tn ] C I = [tnlM, tn] and mesI < Mh (cf. hypothesis (3.5)), we obtain 

from Lemma 4.3 

II -n x II0,n < || jn - x llo n < c(mes I) K+lx(K+1)VK 11 c hK+1Ox(K+1)V11 
where 11 *Ilo,, is the L2-norm over I. Also noting that L S M and that u(tnl) =Un 
inequality (4.8) can be rearranged in the form 

(i - cjjqjjo,,1hln2)IJUn - X'(tn) I 
M 

< jLJ~1 - x~t~.1) I + ch112jjqjon U-_ - x(tn-i) I + chK+1|x1(K+l)lon 
i=l 

Finally, for some constant c > 0, inequalities (4.8) and (4.9) become 
M 

lull,-X(tn) I S, |Unl-1 X(tn-1) I + ncl/lql tE lUn-i -X(tn-i) I 
(4.10) 

+ChK+ 

1jjqjj nI0X( 

K+l 
n 

M 

(4.11) 1 ||u,, - x ||o, S< Chn/ 1 lUn-j - X(tn-i) I +ch |x lo- 
i o 
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Now Lemma A2.2 of Appendix 2 can be applied since inequality (4.10) is of the 
same form as inequality (3) in Appendix 2. So using the estimates 

N 

H17 (I + cMhj2/2I1qII) 
1 

exp(cMT1/211q 110) 
n= 

N N2 

Il0 ll~jix(K+1) ~ n=M IEx(K+1) 2} < M7/211 |jx(K+1) 

we obtain 

IU - X(tn) < cjmax{|IU}- x(ti)j: i = 0,...,M- 1) + hK+ljjx(K+1)jjj. 

In the case M = 1, (4.1) is trivially verified, since U0 - x(to)l = 0 and (4.2) does 
not enter into consideration. Then (4.3) follows directly from (4.1), and (4.4) with 
j = 0 from (4.11) and (4.3). Inequalities (4.4) for 1 < j < K + 1 are obtained by 
using the inequalities 

|| Un - X ljjn < jj Un - Tn 1jjn + 11 n - X jn 

and 

jjun - unj,n < ch-'jIun - nl0n 

The final result follows from (4.7), (4.2) and (4.3). U 

Remark 4.4. The smoothness of x is useful only when we apply an interpolatory 
result. For the case L = 0, without any smoothness hypothesis on x, we obtain 

||"h -X Tlh 
- 

C n;| X |l: 5 = iih| pK( In; E) for n = 1,...,9 N) 0 

In some situations, this might be useful to obtain simple convergence. 

COROLLARY 4.5. Under the hypotheses of Theorem 4.1, we have 

(4.12) jlun - x jj .,n < ch K+?1/211X(K+1) jj 

for alln= 1,...,N. 

Proof. Use the following inequality: 

II ju - XIL.,n < h 1/2 - xII0n + hju- x1114. 

The result follows from (4.4). U 
4.2. Superconvergence Results. Under additional hypotheses we can improve the 

rate of convergence at the nodes. 

THEOREM 4.6. Assume that the hypotheses of Theorem 4.1 hold. Assume also that 
(i) the matrix 

A (t) = fx (x (t), t) (a = t (X(t), t) 

exists and that its columns belong to HK+1 - L(0, T; E), and that 
(ii) there exists a neighborhood V of the origin in E and a positive constant B such 

that for allt and ally inx(t) + V, 

(4.13) j f (y, t) -f (x(t), t) - A(t)(y - x(t)) I < BIx(t) -y l2. 
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Then for h small enough, 

(4.14) max{1U, - x(tj)j: n = O,...,N} < c||uh - xD0 hK+1-L +?Uh - x10I. 

Proof. Choose v = (V0, v1,.. ., v) such that vl(to) = VO and vn(tn) =Vn+l(tn) 

n = 1,. .., N - 1. Substitute that v in (4.5) and sum up over j = 1,..., n. This 
yields 

(4.15) [U1[ - 
X(tn)] 'V(tn) = f [Uh - X] * ihdt + fn [f(Uh) -f(X)] ]Vhdt. 

Let w in HK+2-L(O, T; E) be the solution of 

(4.16) wV(t) + ATw(t) = 0 on [0, T], w(tn) = Un-X(tn)g 

and let wh be a continuous piecewise interpolating polynomial of degree K + 1 - L 
of w such that wh(tn) = - X(tn). From Lemma 4.3, 

W- Wh |Il < chK+1-LL|W(K+2-L) ||. 

Now use the following lemma to express the norm of w(K+2 -L) in terms of 

U1? - X(tn). 

LEMMA 4.7. Fix s in [0, T]. Suppose that g is such that g I I e HK+1-L(In; E) for 
n = 1, . . ., N, and that w in H1(0, T; E) satisfies the equation 

wV(t) + AT(t)W(t) = g(t) on [0, T]. 

Then there exists a constant c independent of g and s E [0, T] such that 

11WIIK+2-L <' CtIW(S) I + 11 g IK+1 L}) 

(Note that w I I belongs to HK+2-L( In; E).) 

Proof. Cf. Delfour, Hager, and Trochu [14]. 0 
We then have 

(4.17) |w - w h chK? - X(tn)I. 

Set vh = wh in (4.15). By Corollary 4.5, Un(t) E x(t) + V for h small enough. Now 
we can use (4.13) to obtain 

(4.18) LUn - X(tn) 2 - xO||v + A wh|o + B|uh - x 

But 

11Wh | _< || W || +|W - wh|, 

and from (4.17), 

|1w - WhO < T1/2 - n ch - x(tn) j 

Also, from Lemma 4.7, 

jjWj0 < CI|W Ill < clJUn 
- X(tn) 1 

Thus for h small enough, 

(4.19) I|whK1 < clUn - x(tn) |. 
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Finally, from (4.16) and (4.17), 

(4.20) || 
h+ ATWh |o = 11Vwh + ATwh - ( + ATw) 11 

< c(2 w -w 1 , chKl U, - X(tn) I. 

Then (4.14) follows from (4.18), (4.19) and (4.20). E 
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